If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2=7t=-10
We move all terms to the left:
t^2-(7t)=0
a = 1; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·1·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*1}=\frac{0}{2} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*1}=\frac{14}{2} =7 $
| 4x-40x^-41=0 | | 6x²+17x-3=0 | | 5x=14x+1-2x | | (4^x)*(2^6x)=16 | | -7+4p=-8+11 | | 0.2x+0.7(4-x)=0.35 | | (2x+3)-(5x+7)=1 | | F(x)=4x^2-2x-9 | | 4(8x-3=-76 | | 64^x-16^x=4^x | | 6x+36=6x-36 | | U/10=v | | 14j-23=19 | | 9x,x=7 | | b/2+1/7=15 | | 50=1/3x+5x=48 | | 3x^2-1=-1 | | 3x+9(2x+5)=-8 | | 2(x-1)=3(x-5)+9 | | Y=-5/2x-5/4 | | 5x-3=24x=9 | | 9=2x-3x=6 | | 9x+14-3x=74 | | y=0.3*101 | | 150=-3c+40 | | 16-16x=64 | | Y=-8-1/2x | | 8/3+3m/2=37/6 | | q/2/3+9=3 | | 7=k/11 | | (3x+23)=(2x+16)+(x+7) | | 24x-12=14x+12 |